Hi chardy,
Here is some info about kefir from a kefir website :
Clean your colon. If a colon is free of blockages, kefir is tolerated more quickly. We have found that people who report having trouble with kefir, often have not followed the advice on colon cleansing. You probably also need to add acidophilus and bifidus bacteria to your small and large intestines. These wonderful bacteria also help to clean and improve the health of your entire digestive tract.
End of Comment of the kefir website !
As you may be able to now see, kefir does not contain the Acidophilous and Bifidus in it !!!!!!!!!!!!!
And here is another bit of info about what kefir contains :
Kefir contains several major strains of friendly bacteria not commonly found in yogurt: Lactobacillus Caucasus, Leuconostoc, Acetobacter species, and Streptococcus species. It also contains beneficial yeasts, such as Saccharomyces kefir and Torula kefir End of quote!
So, what we have is that while kefir does provide Different Beneficial strains of Bacteria and Yeast, it also does "NOT" provide strains which the body may need for Proper Digestion of certain foods which people may choose to eat !
The Probiotics which I am suggesting , may supply the body with "MANY" Different Strains of Digestive Flora !
Whereas the kefir may supply Yeast, as per this info :
SACCHAROMYCES
Saccharomyces belongs to the yeast family. The principal probiotic yeast is Saccharomyces boulardii. Saccharomyces boulardii is also known as Saccharomyces cerevisiae Hansen CBS 5296 and S. boulardii. S. boulardii is normally a nonpathogenic yeast. S. boulardii has been used to treat diarrhea associated with antibiotic use.
End of quote.
As kefir is "Saccharomyces kefir " !
And here is some more info about other Probiotics which may not all be in kefir:
BIFIDOBACTERIUM
Bifidobacteria are normal inhabitants of the human and animal colon. Newborns, especially those that are breast-fed, are colonized with bifidobacteria within days after birth. Bifidobacteria were first isolated from the feces of breast-fed infants. The population of these bacteria in the colon appears to be relatively stable until advanced age when it appears to decline. The bifidobacteria population is influenced by a number of factors, including diet, antibiotics and stress. Bifidobacteria are gram-positive anaerobes. They are non-motile, non-spore forming and catalase-negative. They have various shapes, including short, curved rods, club-shaped rods and bifurcated Y-shaped rods. Their name is derived from the observation that they often exist in a Y-shaped or bifid form. The guanine and cytosine content of their DNA is between 54 mol% and 67mol%. They are saccharolytic organisms that produce acetic and lactic acids without generation of CO2, except during degradation of gluconate. They are also classified as lactic acid bacteria (LAB). To date, 30 species of bifidobacteria have been isolated. Bifidobacteria used as probiotics include Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium animalis, Bifidobacterium thermophilum, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis and Bifidobacterium lactis. Specific strains of bifidobacteria used as probiotics include Bifidobacterium breve strain Yakult, Bifidobacterium breve RO7O, Bifidobacterium lactis Bb12, Bifidobacterium longum RO23, Bifidobacterium bifidum RO71, Bifidobacterium infantis RO33, Bifidobacterium longum BB536 and Bifidobacterium longum SBT-2928.
LACTOBACILLUS
Lactobacilli are normal inhabitants of the human intestine and vagina. Lactobacilli are gram-positive facultative anaerobes. They are non-spore forming and non-flagellated rod or coccobacilli. The guanine and cytosine content of their DNA is between 32 mol% and 51 mol%. They are either aerotolerant or anaerobic and strictly fermentative. In the homofermentative case, glucose is fermented predominantly to lactic acid. Lactobacilli are also classified as lactic acid bacteria (LAB). To date, 56 species of the genus Lactobacillus have been identified. Lactobacilli used as probiotics include Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus bulgaricus, Lactobacillus casei, Lactobacillus cellobiosus, Lactobacillus crispatus, Lactobacillus curvatus, Lactobacillus fermentum, Lactobacillus GG (Lactobacillus rhamnosus or Lactobacillus casei subspecies rhamnosus), Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus plantarum and Lactobacillus salivarus. Lactobacillus plantarum 299v strain originates from sour dough. Lactobacillus plantarum itself is of human origin. Other probiotic strains of Lactobacillus are Lactobacillus acidophilus BG2FO4, Lactobacillus acidophilus INT-9, Lactobacillus plantarum ST31, Lactobacillus reuteri, Lactobacillus johnsonii LA1, Lactobacillus acidophilus NCFB 1748, Lactobacillus casei Shirota, Lactobacillus acidophilus NCFM, Lactobacillus acidophilus DDS-1, Lactobacillus delbrueckii subspecies delbrueckii, Lactobacillus delbrueckii subspecies bulgaricus type 2038, Lactobacillus acidophilus SBT-2062, Lactobacillus brevis, Lactobacillus salivarius UCC 118 and Lactobacillus paracasei subsp paracasei F19.
LACTOCOCCUS
Lactococci are gram-positive facultative anaerobes. They are also classified as lactic acid bacteria (LAB). Lactococcus lactis (formerly known as Streptococcus lactis) is found in dairy products and is commonly responsible for the souring of milk. Lactococci that are used or are being developed as probiotics include Lactococcus lactis, Lactococcus lactis subspecies cremoris (Streptococcus cremoris), Lactococcus lactis subspecies lactis NCDO 712, Lactococcus lactis subspecies lactis NIAI 527, Lactococcus lactis subspecies lactis NIAI 1061, Lactococcus lactis subspecies lactis biovar diacetylactis NIAI 8 W and Lactococcus lactis subspecies lactis biovar diacetylactis ATCC 13675.
Smile Tis your choice.