We investigated the antiviral activity of olive leaf extract (OLE) preparations standardized by liquid chromatography-coupled mass spectrometry (LC-MS) against HIV-1 infection and replication. We find that OLE inhibits acute infection and cell-to-cell transmission of HIV-1 as assayed by syncytia formation using uninfected MT2 cells co-cultured with HIV-1-infected H9 T lymphocytes.
OLE also inhibits HIV-1 replication as assayed by p24 expression in infected H9 cells. These anti-HIV effects of OLE are dose dependent, with EC(50)s of around 0.2 microg/ml. In the effective dose range, no cytotoxicity on uninfected target cells was detected. The therapeutic index of OLE is above 5000. To identify viral and host targets for OLE, we characterized gene expression profiles associated with HIV-1 infection and OLE treatment using cDNA microarrays. HIV-1 infection modulates the expression patterns of cellular genes involved in apoptosis, stress, cytokine, protein kinase C, and hedgehog signaling. HIV-1 infection up-regulates the expression of the heat-shock proteins hsp27 and hsp90, the DNA damage inducible transcript 1 gadd45, the p53-binding protein mdm2, and the hedgehog signal protein patched 1, while it down-regulates the expression of the anti-apoptotic BCL2-associated X protein Bax. Treatment with OLE reverses many of these HIV-1 infection-associated changes. Treatment of HIV-1-infected cells with OLE also up-regulates the expression of the apoptosis inhibitor proteins IAP1 and 2, as well as the calcium and protein kinase C pathway signaling molecules IL-2, IL-2Ralpha, and ornithine decarboxylase ODC 1.
COPYRIGHT 2003 Thorne Research Inc.
COPYRIGHT 2003 Gale Group
http://findarticles.com/p/articles/mi_m0FDN/is_4_8/ai_111303996