CureZone   Log On   Join
Re: Novel Magnesium Compound Reverses Neurodegeneration
 

New lower prices!
Hulda Clark Cleanses



New lower prices!
Hulda Clark Cleanses


trapper/kcmo Views: 7,615
Published: 12 y
 
This is a reply to # 1,906,743

Re: Novel Magnesium Compound Reverses Neurodegeneration


In biochemistry, an oxidoreductase is an enzyme that catalyzes the transfer of electrons from one molecule (the reductant, also called the hydrogen or electron donor) to another (the oxidant, also called the hydrogen or electron acceptor). This group of enzymes usually utilizes NADP or NAD as cofactors.

Contents

 [hide

[edit] Reactions

For example, an enzyme that catalyzed this reaction would be an oxidoreductase:

A + B → A + B

In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor).

In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis:

Pi + glyceraldehyde-3-phosphate + NAD+ → NADH + H+ + 1,3-bisphosphoglycerate

In this reaction, NAD+ is the oxidant (electron acceptor), and glyceraldehyde-3-phosphate is the reductant (electron donor).

[edit] Nomenclature

Proper names of oxidoreductases are formed as "donor:acceptor oxidoreductase"; however, other names are much more common. The common name is "donor dehydrogenase" when possible, such as glyceraldehyde-3-phosphate dehydrogenase for the second reaction above. Common names are also sometimes formed as "acceptor reductase", such as NAD+ reductase. "Donor oxidase" is a special case where O2 is the acceptor.

[edit] Classification

Oxidoreductases are classified as EC 1 in the EC number classification of enzymes. Oxidoreductases can be further classified into 22 subclasses:

  • EC 1.1 includes oxidoreductases that act on the CH-OH group of donors (alcohol oxidoreductases)
  • EC 1.2 includes oxidoreductases that act on the aldehyde or oxo group of donors
  • EC 1.3 includes oxidoreductases that act on the CH-CH group of donors (CH-CH oxidoreductases)
  • EC 1.4 includes oxidoreductases that act on the CH-NH2 group of donors (Amino acid oxidoreductases, Monoamine oxidase)
  • EC 1.5 includes oxidoreductases that act on CH-NH group of donors
  • EC 1.6 includes oxidoreductases that act on NADH or NADPH
  • EC 1.7 includes oxidoreductases that act on other nitrogenous compounds as donors
  • EC 1.8 includes oxidoreductases that act on a sulfur group of donors
  • EC 1.9 includes oxidoreductases that act on a heme group of donors
  • EC 1.10 includes oxidoreductases that act on diphenols and related substances as donors
  • EC 1.11 includes oxidoreductases that act on peroxide as an acceptor (peroxidases)
  • EC 1.12 includes oxidoreductases that act on hydrogen as donors
  • EC 1.13 includes oxidoreductases that act on single donors with incorporation of molecular oxygen (oxygenases)
  • EC 1.14 includes oxidoreductases that act on paired donors with incorporation of molecular oxygen
  • EC 1.15 includes oxidoreductases that act on superoxide radicals as acceptors
  • EC 1.16 includes oxidoreductases that oxidize metal ions
  • EC 1.17 includes oxidoreductases that act on CH or CH2 groups
  • EC 1.18 includes oxidoreductases that act on iron-sulfur proteins as donors
  • EC 1.19 includes oxidoreductases that act on reduced flavodoxin as a donor
  • EC 1.20 includes oxidoreductases that act on phosphorus or arsenic in donors
  • EC 1.21 includes oxidoreductases that act on X-H and Y-H to form an X-Y bond
  • EC 1.97 includes other oxidoreductases

[edit] See also

[edit] External links

 

 
Printer-friendly version of this page Email this message to a friend
Alert Moderators
Report Spam or bad message  Alert Moderators on This GOOD Message

This Forum message belongs to a larger discussion thread. See the complete thread below. You can reply to this message!


 

Donate to CureZone


CureZone Newsletter is distributed in partnership with https://www.netatlantic.com


Contact Us - Advertise - Stats

Copyright 1999 - 2024  www.curezone.org

0.090 sec, (15)