Sodium Bicarbonate effective against fungus
There is evidence Sodium Bicarbonate is effective treating fungal infections. In fact, one of the most effective remedy for candida vaginitis is baking soda douches, only compared to gentian violet and boric acid.
If women can cure vaginal infections using baking soda, why not to use it when we do enemas ??
Well, I have been using it with great results and progressing enormously. I do add 1 teaspoon of baking soda for each liter of water I use when I do enemas.
Sodium bicarbonate has been used for disinfection of dentures and orthodontic appliances, but there is no corroboration in the literature to the efficiency of this substance regarding its influence on adherence. Thus, one of the study groups of the present study included sodium bicarbonate, and, based on the results, it has been shown to be a viable alternative, at least considering its anti-Candida adherence effect, since it significantly reduced the adherence of Candida albicans to the surface of the specimens.
In fact, many studies have shown that sodium bicarbonate at high concentrations has an antimicrobial effect over several microorganisms isolated from the oral cavity, including Candida albicans.29,30 However, none of these studies evaluated the effect of sodium bicarbonate on the adherence of these microorganisms. According to Newbrun29 (1997), sodium bicarbonate presents low abrasion, low cost, relative safety if accidentally ingested and compatibility with the fluoride present in most dentifrices, which is an important advantage over chlorhexidine. This compatibility associated to its efficiency against Streptococcus mutans30 makes sodium bicarbonate an excellent option for complete or partial denture users, who still present remaining teeth in the arches.
Regarding white vinegar and Corega Tabs, both were inefficient in the reduction of the number of Candida albicans colonies adhered to the specimens under the conditions in the present study. In addition, the lack of studies regarding these solutions in the literature contraindicates their use, especially by patients who have already presented signs of stomatitis and, therefore, need a more aggressive approach. However, new studies should be performed, using other concentrations and other immersion times, before a definitive conclusion can be reached.
Antifungal activity of sodium bicarbonate against fungal agents causing superficial infections.
Letscher-Bru V1, Obszynski CM, Samsoen M, Sabou M, Waller J, Candolfi E.
Author information
Abstract
Although sodium bicarbonate-NaHCO(3) (SB) has many domestic and medical, traditional and empirical uses, only little scientific documentation of its activity is available. The aims of this study were to investigate the antifungal activity of SB on the three fungal groups (yeasts, dermatophytes and molds) responsible for human skin and nail infections. We first evaluated the in vitro antifungal activity of SB on 70 fungal strains isolated from skin and nail infections: 40 dermatophytes, 18 yeasts and 12 molds. A concentration of 10 g/L SB inhibited the growth of 80% of all the fungal isolates tested on Sabouraud dextrose agar. The minimal inhibitory concentration 90 (MIC90) of SB measured on Sabouraud dextrose agar, Sabouraud dextrose broth and potato dextrose broth was 5 g/L for the yeasts, 20 g/L for the dermatophytes and 40 g/L for the molds. In a second step, we prospectively evaluated the ex vivo antifungal activity of SB on 24 infected (15 dermatophytes, 7 yeasts and 2 molds) clinical specimens (15 nails and 9 skin scrapings). The fungal growth was completely inhibited for 19 (79%) specimens and reduced for 4 (17%) specimens after 7 days of incubation on Sabouraud dextrose-chloramphenicol agar supplemented with 10 g/L of SB as compared to Sabouraud dextrose-chloramphenicol agar without SB. In conclusion, we documented the antifungal activity of SB on the most common agents of cutaneous fungal infection and onychomycosis, and we specified the effective concentrations for the different groups of pathogenic fungi. The mechanism of action of SB has yet to be explored.