Cool
more from:
http://www.cymascope.com/cymascope.html
The CymaScope is a new type of scientific instrument that makes sound visible. Its development began in 2002, with a prototype that featured a thin, circular, P.V.C. membrane; later we used latex. Fine particulate matter was used as the revealing media. However, it was soon discovered that far greater detail could be obtained by imprinting sonic vibrations on the surface of ultra pure water. The surface tension of water has high flexibility and fast response to imposed vibrations, even with transients as short-lived as a few milliseconds. Therefore, water is able to translate many of the sinusoidal periodicities--in a given sound sample--into physical sinusoidal structures on the water's surface. Current limits to imprinting sound on water occur in the higher harmonics and are due mainly to there being insufficient energy available in this area of the audio spectrum to cause excursions of the surface tension membrane.
In some cases the sinusoidal structures created on the surface tension are visible beneath the water’s surface, providing partial 3D geometrical data. These surface and sub-surface structures can readily be made visible to the naked eye by the application of a light source arranged above the water’s surface, either off-axis or--when using a light ring illuminator--on-axis. Capturing the imprints, known as CymaGlyphs, is achieved by means of a conventional digital camera or camcorder arranged vertically downward toward the water and coaxial with it.