Re: In case my message gets changed
Liver Regeneration May Be Simpler Than Previously Thought
15 Apr 2007
The way the liver renews itself may be simpler than scientists had been assuming. A new study, appearing in The Journal of Biological Chemistry, provides new information on the inner workings of cells from regenerating livers that could significantly affect the way physicians make livers regrow in patients with liver diseases such as cirrhosis, hepatitis, or cancer.
"The human liver is one of the few organs in the body that can regenerate from as little as 25 percent of its tissue," says Seth Karp, assistant professor of surgery at Harvard Medical School, Boston, and main author of the study. "It is not known how the liver does it, but our results provide some details of what makes the liver so unique."
Although organ regeneration has been observed in many animals, the details of how it happens at the cellular level are still not completely understood. So far, scientists have shown that cells that participate in tissue regeneration behave as if they were part of a growing organ in an embryo. In other words, the cells act as if the liver is growing, as do other organs in a developing embryo.
Many of the proteins that induce organ regeneration have been identified and scientists are now trying to make organs regrow by stimulating these proteins. Regrowing livers this way would be especially useful for patients whose livers are so damaged - say, by a tumor that has spread to most of the liver - that a large part would be removed. Unless such patients receive the right amount of liver transplant from an organ donor, they do not always survive. Quickly stimulating the growth of the remaining portion of their liver could be their only chance of survival.
To investigate how the liver regenerates, Karp and his colleagues set out to determine which proteins are involved in the regenerating cells. The scientists were also interested in testing whether regenerating cells behave like embryonic ones, as is commonly assumed for other organs. New processes may explain why the liver is so uniquely capable of renewal and repair after injury, the scientists thought.
Karp's team considered two samples of mice. The first consisted of embryonic mice at various stages of development while the second was composed of adult mice to which two-thirds of their liver were removed. Using techniques such as DNA microarrays - which determine which genes are active in a cells - and software programs that analyze the collected information, the scientists listed all the proteins that help the cells grow and proliferate in both samples.
The results were unexpected. The researchers noticed that only a few proteins were common to both processes. Proteins called transcriiption factors, which affect DNA in the cell's nucleus, were highly involved in the development of embryos' livers but not in adult liver regeneration. Instead, proteins that help cells proliferate were active in both the developing and regenerating livers.
These findings showed that a regenerating liver does not behave as a developing embryo. Instead, regeneration could actually be only due to an increase in cells that multiply through regular cell divisions, a process called hyperplasia.
The new results may also have important medical implications. Transcriiption factors are known to be more difficult to manipulate than the other identified proteins. Since the transcriiption factors were not present in regenerating livers, it might be easier to stimulate liver regeneration by only activating the other identified proteins.
"These results are very encouraging," Karp says. "Not only did we discover that the number of proteins involved in liver regeneration is relatively low, but they don't include transcriiption factors, so we may be closer to being able to stimulate liver regeneration than we thought."
The next step will be for scientists to understand whether the regenerating cells are stem cells. Studies have shown that adult stem cells are involved in the repair of many organs, but in the case of the liver, the cells repairing it through regeneration may simply be regular cells, not stem cells.
"We think that the liver regrows through a relatively simple process, which could explain its prodigious ability to repair itself," Karp says.
----------------------------
Article adapted by Medical News Today from original press release.
----------------------------
Article: "Restoration of Liver Mass after Injury Requires Proliferative and Not Embryonic Transcriiptional Patterns" by Hasan H. Otu, Kamila Naxerova, Karen Ho, Handan Can, Nicole Nesbitt, Towia A. Libermann, and Seth J. Karp
The American Society for Biochemistry and Molecular Biology is a nonprofit scientific and educational organization with over 11,900 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions and industry. The Society's student members attend undergraduate or graduate institutions.
Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the
Science of biochemistry and molecular biology through publication of the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics, organization of scientific meetings, advocacy for funding of basic research and education, support of
Science education at all levels, and promoting the diversity of individuals entering the scientific work force.
For more information about ASBMB, see the Society's Web site at
http://www.asbmb.org/
Contact: Pat Pages
American Society for Biochemistry and Molecular Biology
Article URL:
http://www.medicalnewstoday.com/articles/67653.php