CureZone   Log On   Join
Zeolites Support Forum
Forum Description
Last Message  27 m

This forum is dedicated to support on Zeolites: Zeolite clay, Volcanic Rocks and Ash, Liquid Zeolites.

Zeolites (Greek, zein, "to boil"; lithos, "a stone") are minerals that have a micro-porous structure. The term was originally coined in the 18th century by a Swedish mineralogist named Axel Fredrik Cronstedt who observed, upon rapidly heating a natural mineral, that the stones began to dance about as the water evaporated. Using the Greek words which mean "stone that boils," he called this material zeolite.

More than 1500 zeolites types of been synthesized and 48 naturally occurring zeolites are known. They are basically hydrated alumino-silicate minerals with an "open" structure that can accommodate a wide variety of cations, such as Na+, K+, Ca2+, Mg2+ and others. These positive ions are rather loosely held and can readily be exchanged for others in a contact solution. Some of the more common mineral zeolites are: analcime, chabazite, heulandite, natrolite, phillipsite, and stilbite. An example mineral formula is: Na2Al2Si3O10-2H2O, the formula for natrolite.

Natural zeolites form where volcanic rocks and ash layers react with alkaline groundwater. Zeolites also crystallized in post-depositional environments over periods ranging from thousands to millions of years in shallow marine basins. Naturally occurring zeolites are rarely pure and are contaminated to varying degrees by other minerals, metals, quartz or other zeolites. For this reason, naturally occurring zeolites are excluded from many important commercial applications where uniformity and purity are essential.

Zeolites are the aluminosilicate members of the family of microporous solids known as "molecular sieves". The term molecular sieve refers to a particular property of these materials, i.e. the ability to selectively sort molecules based primarily on a size exclusion process. This is due to a very regular pore structure of molecular dimensions. The maximum size of the molecular or ionic species that can enter the pores of a zeolite is controlled by the diameters of the tunnels. These are conventionally defined by the ring size of the aperture, where, for example, the term "8ring" refers to a closed loop that is built from 8 tetrahedrally coordinated silicon (or aluminium) atoms and 8 oxygen atoms. These rings are not always perfectly flat and symmetrical due to a variety of effects, including strain induced by the bonding between units that are needed to produce the overall structure, or coordination of some of the oxygen atoms of the rings to cations within the structure. Therefore, the pore openings for all rings of one size are not identical.

Zeolites are widely used as ion-exchange beds in domestic and commercial water purification, softening, and other applications. In chemistry, zeolites are used to separate molecules (only molecules of certain sizes and shapes can pass through), as traps for molecules so they can be analyzed.




Zeolites Uses



Commercial and Domestic

Zeolites are widely used as ion-exchange beds in domestic and commercial water purification, softening, and other applications. In chemistry, zeolites are used to separate molecules (only molecules of certain sizes and shapes can pass through), as traps for molecules so they can be analyzed.

Zeolites have the potential of providing precise and specific separation of gases including the removal of H2O, CO2 and SO2 from low-grade natural gas streams. Other separations include: noble gases, N2, freon and formaldehyde. However at present, the true potential to improve the handling of such gases in this manner remains unknown.


Petrochemical industry

Synthetic zeolites are widely used as catalysts in the petrochemical industry, for instance in fluid catalytic cracking and hydro-cracking. Zeolites confine molecules in small spaces, which causes changes in their structure and reactivity. The hydrogen form of zeolites (prepared by ion-exchange) are powerful solid-state acids, and can facilitate a host of acid-catalyzed reactions, such as isomerisation, alkylation, and cracking. Catalytic cracking uses a furnace and reactor. First crude oil distillation fractions are heated in the furnace and passed to the reactor. In the reactor the crude meets with a catalyst such as zeolite. It goes through this step three times, each time getting cooler. Finally it reaches a step know as separator. The separator collects recycled hydrogen. Then it goes through a fractionator and becomes the final item.


Nuclear Industry

Zeolites have uses in advanced reprocessing methods, where their micro-porous ability to capture some ions while allowing others to pass freely allow many fission products to be efficiently removed from nuclear waste and permanently trapped. Equally important is the mineral properties of zeolites. Their alumino-silicate construction is extremely durable and resistant to radiation even in porous form. Additionally, once they are loaded with trapped fission products, the zeolite-waste combination can be hot pressed into an extremely durable ceramic form, closing the pores and trapping the waste in a solid stone block. This is a waste form factor that greatly reduces its hazard compared to conventional reprocessing systems. [1]


Agriculture

In agriculture, clinoptilolite (a naturally occurring zeolite) is used as a soil treatment. It provides a source of slowly released potassium. If previously loaded with ammonium, the zeolite can serve a similar function in the slow release of nitrogen. Cuban studies in the emerging field of "zeoponics" suggest that some crops may be grown in 100% zeolite or zeolite mixtures in which the zeolite is previously loaded or coated with fertilizer and micronutrients. Zeolites can also act a water moderators, whereby they will absorb up to 55% of their weight in water and slowly release it under plant demand. This can prevent root rot and moderate drought cycles.

A potting soil with 12% clinoptilolite was shown to harvest morning dew and return it to the plant roots for reuse. The same bed was able to grow a Jerico strain of leaf lettuce in a sub tropical climate without external water and daytime temperatures exceeding 85 °F. This produce did not bolt and went full term before setting seeds. It also has been shown that certain zeolites can reduce nitrates and nitrites to more plant usable free nitrogen by ion exchange.[citation needed]


Animal Welfare

In Concentrated Animal Growing facilities, the addition of as little as 1% of a very low sodium clinoptiloite was shown to improve feed conversion, reduce airborne ammonia up to 80%, act as a mycotoxin binder and improve bone density. see US Patents 4,917,045 and 6,284,232


Medical

Zeolite-based oxygen generation systems are widely used to produce medical grade oxygen. The zeolite is used as a molecular sieve to create purified oxygen from air, in a process involving the absorption of undesired gases and other atmospheric components, leaving highly purified oxygen and up to 5% argon.

Calcium Silicate, a powdery cousin of Zeolite, is also being explored for quickly clotting severe bleeding.


Heating and refrigeration

Zeolites can be used as solar thermal collectors and for adsorption refrigeration. In these applications, their high heat of adsorption and ability to hydrate and dehydrate while maintaining structural stability is exploited. This hygroscopic property coupled with an inherent exothermic reaction when transitioning from a dehydrated to a hydrated form (heat adsorption), make natural zeolites effective in the storage of solar and waste heat energy.


Detergents

The largest outlet for synthetic zeolite is the global laundry detergent market. This amounted to 1.44 million metric tons per year of anhydrous zeolite A in 1992.


Construction

Synthetic zeolite is also being used as an additive in the production process of warm mix asphalt concrete. The development of this application started in Europe (Germany) in the 1990s. It helps by decreasing the temperature level during manufacture and laying of asphalt concrete, resulting in lower consumption of fossil fuels, thus releasing less carbon dioxide, aerosols and vapours. When added to Portland Cement as a Pozzolan, it can reduce chloride permability and improve workability It reduces weight and helps moderate water content while allowing for slower drying which improves break strength.[citation needed]


Gemstones

Thomsonites have been collected as gemstones from a series of lava flows along Lake Superior in Minnesota and to a lesser degree in Michigan, U.S.A.. Thomsonite nodules from these areas have eroded from basalt lava flows and are collected on beaches and by scuba divers in Lake Superior.

These thomsonite nodules have concentric rings in combinations of colors, black, white, orange, pink, red and many shades of green. Some nodules have copper as inclusions and rarely will be found with copper "eyes". When polished by a lapidary the thomsonites sometimes display chatoyancy.


Aquarium keeping

Zeolites are marketed by pet stores for use as a filter additive in aquariums. In aquariums, zeolites can be used to absorb ammonia and other nitrogenous compounds. However, due to the high affinity of some zeolites for calcium, they may be less effective in hard water and may deplete calcium. Zeolite filtration is used in some marine aquaria to keep nutrient concentrations low for the benefit of corals adapted to nutrient-depleted waters.


Zeolite mineral species

The Zeolite family includes

Amicite
Analcime
Barrerite
Bellbergite
Bikitaite
Boggsite
Brewsterite
Chabazite
Clinoptilolite
Cowlesite
Dachiardite
Edingtonite
Epistilbite
Erionite
Faujasite
Ferrierite

Garronite
Gismondine
Gmelinite
Gobbinsite
Gonnardite
Goosecreekite
Harmotome
Herschelite
Heulandite
Laumontite
Levyne
Maricopaite
Mazzite
Merlinoite
Mesolite
Montesommaite
Mordenite
Natrolite
Offretite

Paranatrolite
Paulingite
Pentasil
Perlialite
Phillipsite
Pollucite
Scolecite
Sodium Dachiardite
Stellerite
Stilbite
Tetranatrolite
Thomsonite
Tschernichite
Wairakite
Wellsite
Willhendersonite
Yugawaralite



References


Zeolites in Sedimentary Rocks. Ch. in United States Mineral Resources, Professional Paper 820, 1973.
Natural and Synthetic Zeolites. U.S. Bureau of Mines Information Circular 9140, 1987.
La roca magica: Uses of natural zeolites in agriculture and industry
Frederick A. Mumpton. National Academy of Sciences Vol. 96, Issue 7, 3463-3470, March 30, 1999Abstract



Forum Link1:
Forum Link2:

ENTER THE FORUM

Add This Forum To Your Favorites!

Filter Messages:
order by


 

Donate to CureZone

0.1523 sec
IP 3.138.126.124