haleyrae
Please read this. It will save your life.
Static Electricity: Creating Charge
Definitions for Electrostatic Discharge Terminology are in the ESD ADV1.0 Glossary which is available as a complimentary download at
http://www.ESDA.org. Electrostatic charge is defined as “electric charge at rest”. Static electricity is an imbalance of electrical charges within or on the surface of a material. This imbalance of electrons produces an electric field that can be measured and that can influence other objects. Electrostatic discharge (ESD) is defined as “the rapid, spontaneous transfer of electrostatic charge induced by a high electrostatic field. Note: Usually, the charge flows through a spark between two bodies at different electrostatic potentials as they approach one another”. Electrostatic discharge can change the electrical characteristics of a semiconductor device, degrading or destroying it. Electrostatic discharge also may upset the normal operation of an electronic system, causing equipment malfunction or failure. Charged surfaces can attract and hold contaminants, making removal of the particles difficult. When attracted to the surface of a silicon wafer or a device's electrical circuitry, air-borne particulates can cause random wafer defects and reduce product yields.
Controlling electrostatic discharge begins with understanding how electrostatic charge occurs in the first place. Electrostatic charge is most commonly created by the contact and separation of two materials. The materials may be similar or dissimilar although dissimilar materials tend to liberate higher levels of static charge. For example, a person walking across the floor generates static electricity as shoe soles contact and then separate from the floor surface. An electronic device sliding into or out of a bag, magazine or tube generates an electrostatic charge as the device's housing and metal leads make multiple contacts and separations with the surface of the container. While the magnitude of electrostatic charge may be different in these examples, static electricity is indeed formed in each case.
ref:http://www.esda.org/fundamentalsp1.html
This is a bit of what I was talking about in my post about having sorted out the Morgellons mystery. Go to this website, which explains static electricity more in depth, to fully understand whats happening.