From Wikipedia
Production[edit]
Of the several places in which
Iodine occurs in nature, only two sources are useful commercially: the caliche, found in Chile, and the iodine-containing brines of gas and oil fields, especially in Japan and the United States. The caliche contains sodium nitrate, which is the main product of the mining activities, and small amounts of sodium iodate and sodium iodide. In the extraction of sodium nitrate, the sodium iodate and sodium
Iodide are also extracted.[19] The high concentration of
Iodine in the caliche and the extensive mining made Chile the largest producer of
Iodine in 2007.
Most other producers use naturally occurring brine for the production of iodine. The Japanese Minami Kanto gas field east of Tokyo and the American Anadarko Basin gas field in northwest Oklahoma are the two largest sources for iodine from brine. The brine has a temperature of over 60°C owing to the depth of the source. The brine is first purified and acidified using sulfuric acid, then the
Iodide present is oxidized to iodine with chlorine. An iodine solution is produced, but is dilute and must be concentrated. Air is blown into the solution, causing the iodine to evaporate, then it is passed into an absorbing tower containing acid where sulfur dioxide is added to reduce the iodine. The hydrogen
Iodide (HI) is reacted with chlorine to precipitate the iodine. After filtering and purification the iodine is packed.[19][20]
2 HI + Cl2 → I2↑ + 2 HCl
I2 + 2 H2O + SO2 → 2 HI + H2SO4
2 HI + Cl2 → I2↓ + 2 HCl
The production of iodine from seawater via electrolysis is not used owing to the sufficient abundance of iodine-rich brine. Another source of iodine is kelp, used in the 18th and 19th centuries, but it is no longer economically viable.[21]
Commercial samples often contain high concentrations of impurities, which can be removed by sublimation. The element may also be prepared in an ultra-pure form through the reaction of
Potassium Iodide withcopper(II) sulfate, which gives copper(II) iodide initially. That decomposes spontaneously to copper(I) iodide and iodine:
Cu2+ + 2 I– → CuI2
2 CuI2 → 2 CuI + I2
There are also other methods of isolating this element in the laboratory, for example, the method used to isolate other halogens: oxidation of the iodide in hydrogen iodide (often made in situ with an iodide and sulfuric acid) by manganese dioxide.