CureZone   Log On   Join
 

Your Stomach by plzchuckle ..... Barefooters' Library

Date:   11/6/2013 10:54:21 AM ( 11 y ago)
Hits:   13,148
URL:   https://www.curezone.org/forums/fm.asp?i=2121520

0 of 0 (0%) readers agree with this message.  Hide votes     What is this?


Part 1



by Jon Barron

http://www.jonbarron.org/






In Part 1 of our series on the digestive system, we overviewed the process whereby food enters the mouth and passes through the GI tract and on out through the anus. We also focused on the process of actually getting food into the stomach through the mouth and esophagus. And finally, we discussed how enzymatic digestion begins in the mouth, but for most people, because of diet and eating habits, never actually amounts to much.


We now pick up the process as the bolus of food arrives in the cardia of the stomach -- which brings us to our first key point of the day that although the stomach has no actual physical separations, it does not function as an undifferentiated sac.


The divisions of the stomach


Anatomically, the stomach is not so much a separate organ as it is an enlargement (like the esophagus) of the intestinal tract that sits just below the diaphragm. In fact, the only thing that separates it from the rest of the GI tract are areas at its top and bottom that use muscles to constrict and close it off from the esophagus and the duodenum on either end respectively. Its functions are very simple: to grind, mix, digest, and parcel out its contents to the intestinal tract in a slow, controlled manner.



Although it is a single cavity (again, just part of the GI tract), it has four main "functional" divisions. Physiologically speaking, they are:



The chyme moves through these divisions sequentially, rather than just dumping into one great cavity. This distinction is crucial to understanding the digestive process. Unfortunately, although medical doctors understand the sequential nature of digestion in the stomach, they do not fully understand what it means. And once again, that's because they base their assumptions on observation; and when it comes to observation, 99.9% of the people they see eat the typical highly processed, cooked food "modern" diet -- not the more natural diet our bodies were designed to handle. In other words, doctors' assumptions about digestion are based on observing people who eat badly, consume food totally devoid of live enzymes, and gulp their food down so quickly it barely has any time to mix with salivary enzymes. This gives a very distorted view of how the digestive process "should" work. And it has profound implications for our understanding of the digestive process and the things that can go wrong with it -- all of which, we will talk more about later.


For now, just understand that food moves through the divisions of the stomach sequentially. Among other things, this allows us to consume more than the intestines are ready for at one time. The divisions allow us to process the food slowly and prepare it for entry into the intestines in a controlled and measured manner.



layers of the stomach


The outer covering of the stomach is called the serosa. Its primary purpose is to carry blood vessels and to protect the stomach. The stomach is supplied by an extremely rich supply of blood vessels. Just under the serosa are the layers of muscle -- longitudinal, circular, and oblique.


As you can see from the illustration to the right, these muscles allow the stomach to bend, twist, and fold in almost any direction. Combine all of that motion with the folds (rugae) in the interior of the stomach (as shown in our previous illustration of the stomach's divisions) and it's easy to see how the stomach can easily "grind" food down and totally mix it up with any digestive enzymes and juices that are present.


One final layer that we need to talk about is the thick, plush layer of mucosa cells that line the stomach cavity. It has deep clefts that increase the stomach's surface area considerably. There are four different types of mucosa cells.



Digestion


There are two main kinds of digestion processes in the stomach:



Mechanical digestion is defined by the stomach's mixing of the chyme, whereas chemical digestion is defined by the action of various acids, hormones, and enzymes on the chyme.


Mechanical digestion


After the bolus drops into the cardia, it is pushed up into the fundus, where it is held for upwards of 40-60 minutes with minimal stomach acid being produced -- about 30% of full levels and not enough to render digestive enzymes inactive. It is while in the fundus that enzymatic digestion (from live enzymes present in the food, salivary enzymes introduced while chewing, or supplemental digestive enzymes taken with your meal) takes place. Up to 75% of digestion can take place during this phase -- or none at all if there are no enzymes present. Since any sustained heat of approximately 118-129 degrees F destroys virtually all enzymes, it's easy to see why the modern diet is pretty much devoid of live enzymes. Add to this the fact that the vast majority of people don't really chew their food but, rather, gulp it down -- thus missing out on salivary enzymes as well -- and you have the very real potential for zero enzymatic digestion taking place in the fundus.


Once again, enzymatic digestion is almost never accounted for in medical texts because doctors rarely see it. Again, ninety-nine percent of their patients eat cooked/processed food that is devoid of digestive enzymes and chew their food minimally so there is very little salivary action on the food. In any case, when doctors look at the cardia and fundus, they primarily see holding areas where virtually no enzymatic digestion takes place.


One nod the medical texts do give to the fundus is that it's where ghrelin is manufactured. Ghrelin is a hormone produced mainly by the P/D1 cells lining the fundus. The key role ghrelin plays is that it stimulates hunger. It is considered the counterpart of the hormone leptin, produced by fatty tissue, which induces satiation when present at higher levels.


In any case, at the end of "fundal" cycle, whether any enzymatic digestion has taken place or not, the chyme is moved down into the body of the stomach, where stomach acid is introduced at full levels, thus neutralizing all enzyme activity. Very little mixing takes place in the cardia or the fundus (again, these areas are reserved primarily for enzymatic digestion) but commences full force once the chyme is in the body of the stomach. In fact, waves of peristalsis (muscle contractions) grind and mix the food once in the body. This action is aided by the rugae, or folds, in the interior of the stomach, which force the chyme to roll over and churn as the muscular contractions squeeze the chyme over the folds.


After a period of intense mixing and digestion, the chyme moves from the body of the stomach into the antrum, where it is held up. The body knows that the duodenum is very small. Therefore, only a small amount of chyme is allowed into the duodenum at any given time; the rest remains in the antrum for additional mixing and grinding and additional chemical digestion. In fact, the major chemical processes take place, not in the body of the stomach, but in the antrum while chyme is waiting its turn to pass through the pyloric valve.


And with that stated, now let us take a closer look at these chemical processes.


Chemical digestion


When we refer to chemical digestion, we're talking about the action of hydrochloric acid and pepsin (or parietal cells and chief cells) on the chyme. At its most basic level, chemical digestion is about taking big molecules and breaking them down into smaller molecules. Note: enteroendocrine cells are also active in the stomach, but (as we will discuss later) they play a regulatory role, rather than a digestive role. Let us now look at the different cells in the stomach that play the major roles in chemical digestion.


Parietal cells


There are some parietal cells in the fundus, but most are in the body of the stomach and the antrum. The parietal cells are extremely important as they secrete hydrochloric acid (HCL) in very high concentrations.



HCL performs the following functions.



Chief cells


Pepsinogen is secreted by the chief cells. By itself, pepsinogen is inactive and will digest nothing until it is converted into pepsin when it comes in contact with the hydrochloric acid in the stomach. Pepsin is an extremely powerful protein digestive enzyme that thrives in a high acid environment. Pepsinogen converts to active pepsin only at low (high acid) pH. This is actually a remarkably elegant maneuver by your digestive system. Since pepsin literally digests protein, you don't want pepsin active in the mucosal/chief cells or it would digest them. Thus the mucosal cells release pepsinogen, pepsin's precursor -- which is converted into pepsin only after the pepsinogen has made its way out of the chief cells and into the stomach itself, where it is converted in the presence of stomach acid. Since the wall of the stomach is coated with a glycoprotein mucous, the pepsin can only digest your meal and not your stomach.


As we discussed already, stomach acid doesn't actually digest protein; it merely unfolds the proteins. That's where pepsin comes in. Pepsin is what actually breaks bonds between amino acids that make up proteins; thus, it is the pepsin that literally digests proteins. (Actually, it breaks them into "peptides," which are smaller chains of amino acids.) And once again, if your body is getting the benefit of full enzymatic digestion in the cardia and fundus, it will digest up to 75% of the proteins in your meal before HCL and pepsin ever come into play. This means that in proper digestion, HCL and pepsin should only be required to do clean up duty. But without enzymatic digestion, your body is required to increase HCL and pepsinogen production by some 400% to make up the difference. Once again, this is a major body stressor with profound long term consequences.


Pepsinogen serves one other key function in the stomach: it plays a significant role in moving chyme through the digestive tract. Or in "medicalese," it increases gastric motility. It accomplishes this in two ways. First, it is the arrival of pepsinogen that plays a key role in telling the esophageal sphincter to close down so that food and stomach acid can't back up into the esophagus. Pepsinogen then works at the other end of the stomach by telling the pyloric sphincter to open, thus allowing food to exit the stomach and make its way into the duodenum.


The chief cells also secrete gastric lipase, which breaks triglycerides into fatty acids and monoglycerides. Unlike triglycerides, fatty acids and monoglycerides are usable by your body and do not promote heart disease. It should also be noted that because gastric lipase is active at a pH of 3-6, its role is somewhat limited until it enters the duodenum, where stomach acid is neutralized and pH is raised. Another note is that although salivary lipase and gastric lipase are overshadowed by the later action of pancreatic lipase in the intestinal tract, if allowed to do their job, the action of salivary and gastric lipase can significantly reduce the burden of pancreatic lipase in the intestinal tract. Once again, we pay a price for our modern diets -- unless we supplement with digestive enzymes.


Enteroendocrine cells


Enteroendocrine cells, which are also known as G-cells, are located primarily in the antrum and release gastrin which stimulates the production of both HCL and pepsinogen in the antrum and higher up in the body of the stomach. It is able to signal higher up in the stomach because the gastrin is released into the bloodstream and circulates around until it can enter the blood vessels that feed the stomach all the way from the esophageal sphincter to the pyloric valve. In addition to promoting digestive juices, gastrin causes the lower esophageal sphincter to relax; thus, high levels of gastrin are thought to play a role in the development of acid reflux disease since they cause the valve to relax too much and at inappropriate times. This will become significant when we talk about using antacids and proton pump inhibitors since by dramatically lowering HCL levels during digestion they cause a concomitant jump in gastrin levels in an attempt to ramp HCL levels back up. The net effect is a much "looser" esophageal valve thus allowing chyme to back up into the esophagus more easily. Taking this into consideration, high levels of gastrin may play a significant role in the development of acid reflux disease.


It probably should be mentioned that G-cells produce these higher levels of gastrin in response to antacids and proton inhibitors by proliferating wildly so that there are more of them to produce gastrin. So once again, artificially forcing symptoms back in line with pharmaceutical drugs has consequences. Although, to be fair, there is no evidence yet that this proliferation of cells leads to a malignant transformation in patients using the drugs. Then again, is that a risk you want to take?


Conclusion


In our discussion of the stomach so far, we have learned exactly how the lack of enzymes in our food affects digestion and why supplementation with a good digestive enzyme formula makes sense. We have also picked up strong indications as to why antacids and proton pump inhibitor drugs may not be the best long term solutions to acid reflux. In fact, you may never look at your stomach in the same way again.


In our next issue, we will conclude our discussion of the anatomy and physiology of the stomach, as we:



And finally, we'll finish with the big payoff on our discussion of the stomach with an examination of the things that can go wrong and how to prevent and even cure them, such as:







Like this natural health newsletter? Sign up for this free bi-monthly newsletter and every time a newsletter is released you'll get it in your email inbox! Keep up to date with the latest in health and learn how to better your mind and body! Click here to sign-up for our
Alternative Health Newsletter
!



Copyright © 2002-2009 The Baseline of Health Foundation. All rights reserved.

Baseline of Health® is a Registered Trademark of Jon Barron

http://www.JonBarron.org





 

<< Return to the standard message view

fetched in 0.08 sec, referred by http://www.curezone.org/forums/fmp.asp?i=2121520