Mold Diseases by rabbitears ..... Ask Microbe Detectives
Date: 4/30/2008 3:01:20 PM ( 16 y ago)
Hits: 2,123
URL: https://www.curezone.org/forums/fm.asp?i=1163748
http://www.mold-survivor.com/diseases_caused_by_molds_in_huma.html
By Peraica, M.; Radic, B.; Lucic, A.; Pavlovic, M. , September 1, 1999
Mycotoxicoses are diseases caused by mycotoxins, i.e. secondary metabolites of molds. Although they occur more frequently in areas with a hot and humid climate, favorable for the growth of molds, they can also be found in temperate zones. Exposure to mycotoxins is mostly by ingestion, but also occurs by the dermal and inhalation routes. Mycotoxicoses often remain unrecognized by medical professionals, except when large numbers of people are involved. The present article reviews outbreaks of mycotoxicoses where the mycotoxic etiology of the disease is supported by mycotoxin analysis or identification of mycotoxin-producing fungi. Epidemiological, clinical and histological findings (when available) in outbreaks of mycotoxicoses resulting from exposure to aflatoxins, ergot, trichothecenes, ochratoxins, 3-nitropropionic acid, zearalenone and fumonisins are discussed.
Mycotoxins are secondary metabolites of molds that exert toxic effects on animals and humans. The toxic effect of mycotoxins on animal and human health is referred to as mycotoxicosis, the severity of which depends on the toxicity of the mycotoxin, the extent of exposure, age and nutritional status of the individual and possible synergistic effects of other chemicals to which the individual is exposed. The chemical structures of mycotoxins vary considerably, but they are all relatively low molecular mass organic compounds. The untoward effect of molds and fungi was known already in ancient times. In the seventh and eighth centuries BC the festival "Robigalia" was established to honour the god Robigus, who had to be propitiated in order to protect grain and trees. It was celebrated on 25 April because that was the most likely time for crops to be attacked by rust or mildew.
In the Middle Ages, outbreaks of ergotism caused by ergot alkaloids from Claviceps purpurea reached epidemic proportions, mutilating and killing thousands of people in
General interest in mycotoxins rose in 1960 when a feed-related mycotoxicosis called turkey X disease, which was later proved to be caused by aflatoxins, appeared in farm animals in
The toxic effects of mycotoxins (e.g. ochratoxins, fumonisins, zearalenone, etc.) are mostly known from veterinary practice. Mycotoxicoses, which can occur in both industrialized and developing countries, arise when environmental, social and economic conditions combine with meteorological conditions (humidity., temperature) which favor the growth of molds.
Involvement of mycotoxins in disease causation should be considered in instances when a disease appears in several persons, with no obvious connection to a known etiological agent, such as microorganisms. Given current trade patterns, mycotoxicoses resulting from contaminated food, locally grown or imported, could occur in developing and developed countries alike. Strict control of food and feed and appropriate public health measures are therefore of considerable importance in reducing the risks to human and animal health.
This review covers only the human aspects of the untoward effects of mycotoxins. However, owing to the frequent nonspecific effects of mycotoxin involvement, the results of animal experiments are useful for understanding possible effects on humans. Since review articles and books are available dealing with specific topics such as the chemistry, analytical procedures, metabolism, and economic aspects of mycotoxins (9-18), these aspects of mycotoxin toxicology are not presented here. Mycotoxicoses are usually insufficiently treated in medical textbooks and are not covered in curricula of many medical schools. The aim of this article is to summarize current understanding of the clinical aspects mainly of mycotoxicoses in humans, and to stress the importance of this class of naturally occurring toxins.
Ergot is the common name of the sclerotia of fungal species within the genus Claviceps, which produce ergot alkaloids. The sclerotium is the dark-coloured, hard fungal mass that replaces the seed or kernel of a plant following infestation. Ergot alkaloids are also secondary metabolites of some strains of Penicillium, Aspergillus and Rhizopus spp.
The ca. 40 ergot alkaloids isolated from Claviceps sclerotia can be divided into three groups:
The source of the ergot strongly influences the type of alkaloids present, as well as the clinical picture of ergotism. Claviceps purpurea produces ergotamine-ergocristine alkaloids, which cause the gangrenous form of ergotism because of their vasoconstrictive activity. The initial symptoms are oedema of the legs, with severe pains. Paraesthesias are followed by gangrene at the tendons, with painless demarcation. The last-recorded outbreak of gangrenous ergotism occurred in
The other type of ergotism, a convulsive form related to intoxication with clavine alkaloids from Claviceps fusiformis was last seen during 1975 in
Ergotism is extremely rare today, primarily because the normal grain cleaning and milling processes remove most of the ergot so that only very low levels of alkaloids remain in the resultant flours. In addition, the alkaloids that are the causative agents of ergotism are relatively labile and are usually destroyed during baking and cooking.
Aflatoxins occur in nuts, cereals and rice under conditions of high humidity and temperature and present a risk to human health that is insufficiently recognized. The two major Aspergillus species that produce aflatoxins are A. flavus, which produces only B aflatoxins, and A. parasiticus, which produces both B and G aflatoxins. Aflatoxins [M.sub.1] and [M.sub.2] are oxidative metabolic products of aflatoxins [B.sub.1] and [B.sub.2] produced by animals following ingestion, and so appear in milk (both animal and human), urine and feces. Aflatoxicol is a reductive metabolite of aflatoxin [B.sub.1].
Aflatoxins are acutely toxic, immunosuppressive, mutagenic, teratogenic and carcinogenic compounds. The main target organ for toxicity and carcinogenicity is the liver. The evaluation of epidemiological and laboratory results carried out in 1987 by the International Agency for Research on Cancer (IARC) found that there is sufficient evidence in humans for the carcinogenicity of naturally occurring mixtures of aflatoxins, which are therefore classified as Group 1 carcinogens, except for aflatoxin [M.sub.1], which is possibly carcinogenic to humans (Group 2B). Several outbreaks of aflatoxicosis have occurred in tropical countries, mostly among adults in rural populations with a poor level of nutrition for whom maize is the staple food. The clinical picture presented by cases indicated acute toxic liver injury, which was confirmed by morphological changes in liver autopsy specimens that were indicative of toxic hepatitis. Mortality rates in the acute phase were 10-60 %. At the end of one year, surviving patients had no jaundice, and most of them had recovered clinically.
A case of attempted suicide with purified aflatoxin [B.sub.1] is reported to have occurred in 1966 in the
Aflatoxins have been detected in the blood of pregnant women, in neonatal umbilical cord blood, and in breast milk in African countries, with significant seasonal variations. Levels of aflatoxins detected in some umbilical cord bloods at birth are among the highest levels ever recorded in human tissue and fluids.
Aflatoxins have been suggested as an etiological factor in encephalopathy and fatty degeneration of viscera, similar to Reye syndrome, which is common in countries with a hot and humid climate. The clinical picture includes enlarged, pale, fatty liver and kidneys and severe cerebral oedema. Aflatoxins have been found in blood during the acute phase of the disease, and in the liver of affected children. However, use of aspirin or phenothiazines is also suspected to be involved in the etiology.
In tropical countries, clinically recognizable jaundice is frequent during the neonatal period. In a large investigation undertaken on 327 Babies with jaundice and 80 matching controls in Nigeria, it was found that the occurrence of glucose-6-phosphate dehydrogenase (G6PD) deficiency together with the presence of aflatoxins in the serum are significant risk factors for the development of neonatal jaundice.
The geographical and seasonal prevalences of aflatoxins in food and of kwashiorkor show a remarkable similarity. In several tropical countries, aflatoxins have been found more frequently and in higher concentration in liver specimens from children with kwashiorkor than in controls. Clinical investigation of aflatoxin elimination in children with kwashiorkor and marasmic kwashiorkor, who were fed an aflatoxin-free diet, proved that aflatoxins in these children are slowly eliminated. In several studies, aflatoxicol was found in the serum, liver, urine and stools of children with kwashiorkor and marasmic kwashiorkor, in contrast to marasmic and control children where this metabolite was not found. It is not clear whether this difference is causally related to kwashiorkor or is a consequence of the disease.
In recent studies, aflatoxins were found in the brain and lungs of children who had died from kwashiorkor and in control children who had died from various other diseases. It was suggested that the presence of aflatoxins in the brains of control children might be due to metabolic imbalance or to a failure in the excretory mechanisms of children with conditions such as measles (which in 25% of cases precedes kwashiorkor), renal failure, pyloric stenosis, gastroenteritis. Aflatoxins in the lungs were found in all children diagnosed to have pneumonia, irrespective of the presence of kwashiorkor. This could be due to a reduced clearing ability of the lungs in pulmonary diseases or to exposure via the respiratory route. In the
In the
3-Nitropropionic acid 3-Nitropropionic acid (3-NPA) is a secondary metabolite of Arthrinium sp., considered to cause a form of acute food-poisoning called "moldy sugarcane poisoning". The problem occurred during winter (February and March) in 13 provinces of northern
Ochratoxins are secondary metabolites of Aspergillus and Penicillium strains, found on cereals, coffee and bread, as well as on all kinds of food commodities of animal origin in many countries. The most frequent is ochratoxin A, which is also the most toxic. It has been shown to be nephrotoxic, immunosuppressive, carcinogenic and teratogenic in all experimental animals tested so far.
Acute renal failure in one person, possibly caused by inhalation of ochratoxin A in a granary which had been closed for 2 years, was reported in
Owing to the similarity of morphological and functional kidney lesions in ochratoxin A-induced porcine nephropathy and endemic nephropathy, this mycotoxin has been proposed as the causative agent of endemic nephropathy, although the evidence for this is not substantial. This fatal renal disease occurs among rural populations in
Ochratoxin A is found more frequently and in higher concentrations in the blood of inhabitants from endemic regions than control regions. Many samples of locally produced food and feed collected in the endemic area contained ochratoxin A. It should be emphasized that the grain analyzed had been kept for many months in the inadequate food stores of individual families.
In
In endemic regions of
Trichothecenes are mycotoxins produced mostly by members of the Fusarium genus, although other genera (e.g. Trichoderma, Trichothecium, Myrothecium and Stachybotrys) are also known to produce these compounds. To date, 148 trichothecenes have been isolated, but only a few have been found to contaminate food and feed. The most frequent contaminants are deoxynivalenol (DON), also known as vomitoxin, nivalenol (NIV), diacetoxyscirpenol (DAS), while T-2 toxin is rarer.
Common manifestations of trichothecene toxicity are depression of immune responses and nausea, sometimes vomiting. The first recognized trichothecene mycotoxicosis was alimentary toxic aleukia in the
In several cases, trichothecene mycotoxicosis was caused by a single ingestion of bread containing toxic flour or rice. In experimental animals, trichothecenes are 40 times more toxic when inhaled than when given orally. Trichothecenes were found in air samples collected during the drying and milling process on farms, in the ventilation systems of private houses and office buildings, and on the walls of houses with high humidity. There are some reports showing trichothecene involvement in the development of "sick building syndrome". The symptoms of airborne toxicosis disappeared when the buildings and ventilation systems were thoroughly cleaned.
Zearalenone Zearalenone (previously known as F-2) is produced mainly by Fusarium graminearum and related species, principally in wheat and maize but also in sorghum, barley and compounded feeds. Zearalenone and its derivatives produce estrogenic effects in various animal species (infertility, vulval oedema, vaginal prolapse and mammary hypertrophy in females and feminization of males — atrophy of testes and enlargement of mammary glands).
In
Fumonisins are mycotoxins produced throughout the world by Fusarium moniliforme and related species when they grow in maize. Fumonisins [B.sub.1] and [B.sub.2] are of toxicological significance, while the others (B.sub.3], [B.sub.4], [A.sub.1] and [A.sub.2]) occur in very low concentrations and are less toxic.
In
Fumonisin [B.sub.1] was found more frequently and in much higher concentrations in maize in regions of
The impact of other mycotoxins on human health was reported in persons occupationally exposed to large amounts of different mycotoxin-producing fungi (farmers, workers in silos, etc.). In such cases, exposure to spores via the respiratory tract seems to be of considerable importance.
In
Pulmonary mycotoxicosis has been reported in ten persons exposed to large quantities of fungal hyphae and spores during the cleaning of silos. The clinical picture developed several hours afterwards, with burning eyes, throat and chest, irritating cough and fever. There was no wheezing, cyanosis or other sign of bronchospasm. In five patients, chest X-rays revealed reticular and fine nodular features compatible with interstitial pneumonitis. Histological study of a lung biopsy from one patient showed a multifocal acute process, with primary involvement of terminal bronchioles containing numbers of various spores. Cultures from lung biopsy material revealed at least five fungal species, including one Fusarium and one Penicillium. However, blood samples were not checked for the presence of mycotoxins. In contrast with the findings in patients with farmer's lung disease, these patients did not develop positive serological reactions to thermophilic actinomycetes or to extracts of fungi obtained from hay or silage. The patients were followed for periods of 1 to10 years; they continued their work, avoiding massive re-exposure to fungal dust, and during the observation period there were no further incidents.
<< Return to the standard message view
fetched in 0.02 sec, referred by http://www.curezone.org/forums/fmp.asp?i=1163748