http://www.oism.org/pproject/s33p36.htm
Environmental Effects of Increased Atmospheric Carbon Dioxide
Political leaders gathered in Kyoto, Japan, in December 1997 to consider a world treaty restricting human production of "greenhouse gases," chiefly carbon dioxide (CO2). They feared that CO2 would result in "human-caused global warming" – hypothetical severe increases in Earth's temperatures, with disastrous environmental consequences. During the past 10 years, many political efforts have been made to force worldwide agreement to the Kyoto treaty.
When we reviewed this subject in 1998 (1,2), existing satellite records were short and were centered on a period of changing intermediate temperature trends. Additional experimental data have now been obtained, so better answers to the questions raised by the hypothesis of "human-caused global warming" are now available.
Figure 1: Surface temperatures in the Sargasso Sea, a 2 million square mile region of the Atlantic Ocean, with time resolution of 50 to 100 years and ending in 1975, as determined by isotope ratios of marine organism remains in sediment at the bottom of the sea (3). The horizontal line is the average temperature for this 3,000-year period. The Little Ice Age and Medieval Climate Optimum were naturally occurring, extended intervals of climate departures from the mean. A value of 0.25 °C, which is the change in Sargasso Sea temperature between 1975 and 2006, has been added to the 1975 data in order to provide a 2006 temperature value.
The average temperature of the Earth has varied within a range of about 3°C during the past 3,000 years. It is currently increasing as the Earth recovers from a period that is known as the Little Ice Age, as shown in Figure 1. George Washington and his army were at Valley Forge during the coldest era in 1,500 years, but even then the temperature was only about 1° Centigrade below the 3,000-year average.
Figure 2: Average length of 169 glaciers from 1700 to 2000 (4). The principal source of melt energy is solar radiation. Variations in glacier mass and length are primarily due to temperature and precipitation (5,6). This melting trend lags the temperature increase by about 20 years, so it predates the 6-fold increase in hydrocarbon use (7) even more than shown in the figure. Hydrocarbon use could not have caused this shortening trend.
The most recent part of this warming period is reflected by shortening of world glaciers, as shown in Figure 2. Glaciers regularly lengthen and shorten in delayed correlation with cooling and warming trends. Shortening lags temperature by about 20 years, so the current warming trend began in about 1800.
Figure 3: Arctic surface air temperature compared with total solar irradiance as measured by sunspot cycle amplitude, sunspot cycle length, solar equatorial rotation rate, fraction of penumbral spots, and decay rate of the 11-year sunspot cycle (8,9). Solar irradiance correlates well with Arctic temperature, while hydrocarbon use (7) does not correlate.
Atmospheric temperature is regulated by the sun, which fluctuates in activity as shown in Figure 3; by the greenhouse effect, largely caused by atmospheric water vapor (H2O); and by other phenomena that are more poorly understood. While major greenhouse gas H2O substantially warms the Earth, minor greenhouse gases such as CO2 have little effect, as shown in Figures 2 and 3. The 6-fold increase in hydrocarbon use since 1940 has had no noticeable effect on atmospheric temperature or on the trend in glacier length.
While Figure 1 is illustrative of most geographical locations, there is great variability of temperature records with location and regional climate. Comprehensive surveys of published temperature records confirm the principal features of Figure 1, including the fact that the current Earth temperature is approximately 1 °C lower than that during the Medieval Climate Optimum 1,000 years ago (11,12).
Figure 4: Annual mean surface temperatures in the contiguous United States between 1880 and 2006 (10). The slope of the least-squares trend line for this 127-year record is 0.5 ºC per century.
Surface temperatures in the United States during the past century reflect this natural warming trend and its correlation with solar activity, as shown in Figures 4 and 5. Compiled U.S. surface temperatures have increased about 0.5 °C per century, which is consistent with other historical values of 0.4 to 0.5 °C per century during the recovery from the Little Ice Age (13-17). This temperature change is slight as compared with other natural variations, as shown in Figure 6. Three intermediate trends are evident, including the decreasing trend used to justify fears of "global cooling" in the 1970s.
Figure 5: U.S. surface temperature from Figure 4 as compared with total solar irradiance (19) from Figure 3.
Between 1900 and 2000, on absolute scales of solar irradiance and degrees Kelvin, solar activity increased 0.19%, while a 0.5 °C temperature change is 0.21%. This is in good agreement with estimates that Earth's temperature would be reduced by 0.6 °C through particulate blocking of the sun by 0.2% (18).
Figure 6: Comparison between the current U.S. temperature change per century, the 3,000-year temperature range in Figure 1, seasonal and diurnal range in Oregon, and seasonal and diurnal range throughout the Earth.
Solar activity and U.S. surface temperature are closely correlated, as shown in Figure 5, but U.S. surface temperature and world hydrocarbon use are not correlated, as shown in Figure 13.
The U.S. temperature trend is so slight that, were the temperature change which has taken place during the 20th and 21st centuries to occur in an ordinary room, most of the people in the room would be unaware of it.
Figure 7: Annual precipitation in the contiguous 48 United States between 1895 and 2006. U.S. National Climatic Data Center, U.S. Department of Commerce 2006 Climate Review (20). The trend shows an increase in rainfall of 1.8 inches per century – approximately 6% per century.
During the current period of recovery from the Little Ice Age, the U.S. climate has improved somewhat, with more rainfall, fewer tornados, and no increase in hurricane activity, as illustrated in Figures 7 to 10. Sea level has trended upward for the past 150 years at a rate of 7 inches per century, with 3 intermediate uptrends and 2 periods of no increase as shown in Figure 11. These features are confirmed by the glacier record as shown in Figure 12. If this trend continues as did that prior to the Medieval Climate Optimum, sea level would be expected to rise about 1 foot during the next 200 years.
As shown in Figures 2, 11, and 12, the trends in glacier shortening and sea level rise began a century before the 60-year 6-fold increase in hydrocarbon use, and have not changed during that increase. Hydrocarbon use could not have caused these trends.
Figure 8: Annual number of strong-to-violent category F3 to F5 tornados during the March-to-August tornado season in the U.S. between 1950 and 2006. U.S. National Climatic Data Center, U.S. Department of Commerce 2006 Climate Review (20). During this period, world hydrocarbon use increased 6-fold, while violent tornado frequency decreased by 43%.
During the past 50 years, atmospheric CO2 has increased by 22%. Much of that CO2 increase is attributable to the 6-fold increase in human use of hydrocarbon energy. Figures 2, 3, 11, 12, and 13 show, however, that human use of hydrocarbons has not caused the observed increases in temperature.
The increase in atmospheric carbon dioxide has, however, had a substantial environmental effect. Atmospheric CO2 fertilizes plants. Higher CO2 enables plants to grow faster and larger and to live in drier climates. Plants provide food for animals, which are thereby also enhanced. The extent and diversity of plant and animal life have both increased substantially during the past half-century. Increased temperature has also mildly stimulated plant growth.
Figure 9: Annual number of Atlantic hurricanes that made landfall between 1900 and 2006 (21). Line is drawn at mean value.
Does a catastrophic amplification of these trends with damaging climatological consequences lie ahead? There are no experimental data that suggest this. There is also no experimentally validated theoretical evidence of such an amplification.
Predictions of catastrophic global warming are based on computer climate modeling, a branch of science still in its infancy. The empirical evidence – actual measurements of Earth's temperature and climate – shows no man-made warming trend. Indeed, during four of the seven decades since 1940 when average CO2 levels steadily increased, U.S. average temperatures were actually decreasing. While CO2 levels have increased substantially and are expected to continue doing so and humans have been responsible for part of this increase, the effect on the environment has been benign.
There is, however, one very dangerous possibility.
Our industrial and technological civilization depends upon abundant, low-cost energy. This civilization has already brought unprecedented prosperity to the people of the more developed nations. Billions of people in the less developed nations are now lifting themselves from poverty by adopting this technology.
Figure 10: Annual number of violent hurricanes and maximum attained wind speed during those hurricanes in the Atlantic Ocean between 1944 and 2006 (22,23). There is no upward trend in either of these records. During this period, world hydrocarbon use increased 6-fold. Lines are mean values.
Hydrocarbons are essential sources of energy to sustain and extend prosperity. This is especially true of the developing nations, where available capital and technology are insufficient to meet rapidly increasing energy needs without extensive use of hydrocarbon fuels. If, through misunderstanding of the underlying science and through misguided public fear and hysteria, mankind significantly rations and restricts the use of hydrocarbons, the worldwide increase in prosperity will stop. The result would be vast human suffering and the loss of hundreds of millions of human lives. Moreover, the prosperity of those in the developed countries would be greatly reduced.
Figure 11: Global sea level measured by surface gauges between 1807 and 2002 (24) and by satellite between 1993 and 2006 (25). Satellite measurements are shown in gray and agree with tide gauge measurements. The overall trend is an increase of 7 inches per century. Intermediate trends are 9, 0, 12, 0, and 12 inches per century, respectively. This trend lags the temperature increase, so it predates the increase in hydrocarbon use even more than is shown. It is unaffected by the very large increase in hydrocarbon use.
Mild ordinary natural increases in the Earth's temperature have occurred during the past two to three centuries. These have resulted in some improvements in overall climate and also some changes in the landscape, such as a reduction in glacier lengths and increased vegetation in colder areas. Far greater changes have occurred during the time that all current species of animals and plants have been on the Earth. The relative population sizes of the species and their geographical distributions vary as they adapt to changing conditions.
Figure 12: Glacier shortening (4) and sea level rise (24,25). Gray area designates estimated range of error in the sea level record. These measurements lag air temperature increases by about 20 years. So, the trends began more than a century before increases in hydrocarbon use.
The temperature of the Earth is continuing its process of fluctuation in correlation with variations in natural phenomena. Mankind, meanwhile, is moving some of the carbon in coal, oil, and natural gas from below ground to the atmosphere and surface, where it is available for conversion into living things. We are living in an increasingly lush environment of plants and animals as a result. This is an unexpected and wonderful gift from the Industrial Revolution.
CureZone Newsletter is distributed in partnership with https://www.netatlantic.com
Contact Us - Advertise - Stats
0.078 sec, (9)