Insulin and Its Metabolic Effects--part 3 by Dancing Love .....

By Ron Rosedale, M.D.

Date:   6/26/2006 12:42:53 PM ( 18 y ago)

Harmful Effects of Sugar

We know sugar increases insulin, but even by itself sugar is bad for you. You can divide aging into basically two major categories, one being genetic causes of aging. Cells have a limited capacity to divide, but normally we don’t reach that capacity. The more rapidly you make cells divide, the more rapidly they age.

One of the effects of insulin is to stimulate cellular proliferation and division. So we know that it increases the rate of aging of a cell population by that alone. But to get to the other category, our cells accumulate damage with age and we can’t help that.

When I say aging, I really am talking about something called senescence, or the damage associated with aging, but the common usage is the word aging. I can’t prevent you from being a day older tomorrow; that is aging. When we talk about aging we normally think about the damage that is associated with that day.

We have accumulated more damage during that day, which is called senescence. What causes that damage? There is often an example of test tubes in a laboratory. You don't think of test tubes as aging, yet if you mark test tubes with a little red dot and counted the number of test tubes there were at the end of the year with a little red dot left, there would hardly be any. Why? Because they have encountered damage; they've broken, so even though there is not aging they do have immortality rates. Aging is an increase in the rate of mortality.

In humans, the rate of mortality doubles every eight years.

That is really how you gauge the rate of aging. We found in animal studies that the rate of aging can be largely controlled by insulin, but the damage that accumulates during that aging is caused largely by sugar.

The two major causes of accumulated damage are oxygenation and glycation.

Oxidation

Whenever oxygen combines with something, it oxidizes. Oxygen is a very poisonous substance. Throughout most of the history of life on Earth there was no oxygen. Organisms had to develop very specific mechanisms of dealing with high levels of oxygen before there could ever be life with oxygen.

So we evolved very quickly, as plants arose and developed a very easy means of acquiring energy, they could just lay back and catch rays, they dealt with that oxygen with the carbon dioxide by spitting it out, so the oxygen in the atmosphere increased. All the other organisms then had to cope with that toxic oxygen. If they didn't have ways of dealing with it, they perished.

One of the earliest ways of dealing with all that oxygen was for the cells to huddle together so that at least the interior cells wouldn't be exposed as much. So, multi-celled organisms arose after oxygen did. Of course, with that came the need for cellular communication.

Glycation

Everyone knows that oxygen causes damage, but unfortunately the press has not been as kind to publicize glycation. Glycation is the same as oxidation except substitute the word glucose. When you glycate something you combine it with glucose. Glucose combines with anything else really; it's a very sticky molecule.

Just take sugar on your fingers. It's very sticky. It sticks specifically to proteins. So the glycation of proteins is extremely important. If it sticks around a while it produces what are called advanced glycated end products (A.G.E.s).

That acronym is not an accident. If you can turn over, or re-manufacture, the protein that's good, and it increases the rate of protein turnover if you are lucky. Glycation damages the protein to the extent that white blood cells will come around and gobble it up and get rid of it, so then you have to produce more, putting more of a strain on your ability to repair and maintain your body.

That is the best alternative; the worst alternative is when those proteins get glycated that can't turn over very rapidly, like collagen, or like a protein that makes up nerve tissue. These proteins cannot be gotten rid of, so the protein accumulates, and the A.G.E.s accumulate and continue to damage.

That includes the collagen that makes up the matrix of your arteries. A.G.E.s are so bad that we know that there are receptors for A.G.E.s, hundreds of receptors, for every macrophage. They are designed to try to get rid of those A.G.E.s, but what happens when a macrophage combines with an A.G.E. product?

It sets up an inflammatory reaction. You eat a diet that promotes elevated glucose, and you produce increased glycated proteins and A.G.E.s, you are increasing your rate of inflammation of any kind. You get down to the roots, including arthritis and headaches.

When you start putting people on a diet to remedy all of this, patients who used to have horrible headaches or shoulder pains don't have them anymore.

Glycated proteins make a person very pro-inflammatory, so we age and, at least partially, accumulate damage by oxidation. One of the most important types of tissues that oxygenate is the fatty component, the lipid, especially the poly-unsaturated fatty acids, and they turn rancid and glycate.

The term for glycation in the food industry is carmelization. It is used all the time to make caramel. So the way we age is that we turn rancid and we carmelize. It's very true, and that is what gets most of us. If that doesn't get us, then the genetic causes of aging will, because every cell in your body has genetic programs to commit suicide. There are various theories for why this is, one being that if they didn't, virtually every cell in your body would eventually turn cancerous.

Whether those so-called applopatic genes developed as a means to prevent cancer or not is open to speculation, but it is a good theory. We know that all cancer cells have turned off the mechanisms for applotosis, which is the medical term for chemical suicide. So we know that it plays a role.

Diet

Diet really becomes pretty simple. Carbohydrates we started talking about. You've got fiber and non-fiber and that's really clear-cut. Fiber is good, non-fiber is bad. Fibrous carbs like vegetables such as broccoli are great. What about a potato? A potato is a big lump of sugar. That's all it is. You chew a potato, what are you swallowing? Glucose. You may not remember, but you learned that in eighth grade, but the medical profession still hasn't learned that.

The Major Salivary Enzyme

The major salivary enzyme is amylase. It is used to break down amylase, which is just a tree of glucose molecules. What is a slice of bread? A slice of sugar. Does it have anything else good about it? Virtually nothing.

Somebody e-mailed me who had decided to do a little research. And there are over 50 essential nutrients to the human body. You know you need to breathe oxygen. It gives us life and it kills us. It’s the same thing with glucose. Certain tissues require some glucose. We wouldn't be here if there were no glucose, it gives us life and it kills us. We know that we have essential amino acids and we have essential fatty acids. They are essential for life, we better take them in as building blocks or we die.

So this person took all the essential nutrients that are known to man and plugged them into a computer data bank, and he asked the computer what are the top 10 foods that contain each nutrient that is required by the human body. Each of the 53 or 54, depending on who you talk to, essential nutrients that there are were plugged in, and did you know that grains did not come up in the top ten on any one?

What is the minimum daily requirement for carbohydrates?

ZERO.

The food pyramid is based on a totally irrelevant nutrient.

Why do we eat?

One reason we eat is for energy. That's half of the reason. The other essential reason (Not just for fun! Fun is a good one, but you won't have much fun if you eat too much) is to replace tissue and gather up building blocks for maintenance and repair.

Those are the two essential reasons that we need to eat. We need the building blocks and we need fuel, not the least of which is to have energy to obtain those building blocks and then to have energy to fuel those chemical reactions to use those building blocks.

The building blocks that are needed are proteins and fatty acids, not much in the way of carbohydrates. You can get all the carbohydrates you need from proteins and fats.

There are two kinds of fuel that your body can use with minor exceptions, sugar and fat. We mentioned earlier that the body is going to store excess energy as fat. Why does the body store it as fat? Because that is the body's desired fuel that will sustain you and allow you to live. The body can store only a little bit of sugar.

In an active day you would die if you had to rely 100 percent on sugar.

Why doesn't your body store more sugar if it is so needed? Sugar was never meant to be your primary energy source, it is meant to be your body's turbo charger.

Everybody right here, right now should be burning almost all fat with minor exceptions. Your brain will burn sugar, though it doesn't have to, by burning by-products of fat metabolism called ketones. That is what it has to burn when you fast for any length of time. It has been shown that if your brain was really good at burning ketones from fat that you can get enough sugar from eating 100 percent fat.

You can make a little bit of sugar out of the glycerol molecule of fat. Take two glycerol molecules and you have a molecule of glucose. Two triglycerides will give you a molecule of glucose. The brain can actually exist without a whole lot of sugar, contrary to popular belief. Glucose was meant to be fuel used in an emergency situation if you had to expend an extreme amount of energy, such as running from a saber tooth tiger.

It is a turbo charger, a very hot burning fuel. If you need fuel over and above what fat can provide, you will dig into your glycogen and burn sugar. But your primary energy source as we are here right now should be almost all fat.

What happens if you eat sugar?

Your body's main way of getting rid of sugar, because it is toxic, is to burn it. That which your body can't burn your body will get rid of by storing it as glycogen, and when that gets filled up your body stores it as fat. If you eat sugar your body will burn it and you stop burning fat.

Another major effect of insulin on fat is it prevents you from burning it. What happens when you are insulin resistant and you have a bunch of insulin floating around all the time? You wake up in the morning with an insulin level of 90.

And how much fat are you going to be burning? Virtually none. What are you going to burn if not fat? Sugar coming from your muscle. So you have all this fat that you've accumulated over the years that your body is very adept at adding to. Every time you have any excess energy you are going to store it as fat, but if you don't eat, where you would otherwise be able to burn it, you cannot. You will still burn sugar because that is all your body is capable of burning anymore.

Where does your body get the sugar?

Well you don't store much of it in the form of sugar so it will take it from your muscle. That's your body's major depot of sugar. You just eat up your muscle tissue. Any time you have excess you store it as fat and any time you are deficient you burn up your muscle.

So where do carbohydrates come in?

They don't. There is no essential need for carbohydrates. Why are we all eating carbohydrates? To keep the rate of aging up, we don't want to pay social security to everyone.

I didn't say you can't have any carbs, I said fiber is good. Vegetables are great; I want you to eat vegetables. The practical aspect of it is that you are going to get carbs, but there is no essential need. The traditional Eskimo subsists on almost no vegetables at all, but they get their vitamins from organ meats and things like eyeball, which are a delicacy, or were.

So, you don't really need it, but sure, vegetables are good for you and you should eat them. They are part of the diet that I would recommend, and that is where you'll get your vitamin C. I recommend Vitamin C supplements, I don't have anything against taking supplements, I use a lot of them.

Fruit is a mixed blessing. You can divide food on a continuum. There are some foods that I really can't say anything good about and the other end of the spectrum are foods that are totally essential, like omega-3 fatty acids for instance, which most people are very deficient in, and even those have a detriment because they are highly oxidizable, so you had better have the antioxidant capacity. So if you are going to supplement with cod liver oil you should supplement with Vitamin E too or it will actually do you more harm than good.

Most foods fall somewhere in the middle of the continuum. For example, with strawberries you are going to get a lot of sugar, but you are also going to get a food that is the second or third highest in antioxidant potential of any food known, the first being garlic, the second either being strawberries or blueberries. I will let some patients put strawberries in, let's say, a protein smoothie in the morning. But if they are a hard core diabetic, strawberries are out.

It doesn't take much, any type I diabetic who is not producing any insulin can tell you what foods do to their blood sugar. It doesn't take much. What is very surprising to these people once they really measure is what little carbohydrate it takes to cause your blood sugar to skyrocket.

One saltine cracker will take the blood sugar to over 100, and in many people it will cause the blood sugar to go to 150 for a variety of reasons, not just the sugar in it.

We only have one hormone that lowers sugar, and that's insulin. Its primary use was never to lower sugar. We've got a bunch of hormones that raise sugar, cortisone being one and growth hormone another, and epinephrine and glucagon.

Our primary evolutionary problem was to raise blood sugar to give your brain and your nerves enough as well as, primarily, red blood cells, which require glucose. So from an evolutionary sense if something is important we have redundant mechanisms. The fact that we only have one hormone that lowers sugar tells us that it was never something important in the past.

So you get this rush of sugar and your body panics, your pancreas panics and it stores, when it is healthy, insulin in these granules that is ready to be released. It lets these granules out and it pours out a bunch of insulin to deal with this onslaught of sugar and what does that do?

Well the pancreas generally overcompensates, and it causes your sugar to go down, and just as I mentioned, you have got a bunch of hormones then to raise your blood sugar, they are then released, including cortisone. The biggest stress on your body is eating a big glucose load.

Then epinephrine is released too, so it makes you nervous, and it also stimulates your brain to crave carbohydrates, to seek out some sugar. So you are craving carbohydrates, so you eat a bowl of cheerios or a big piece of fruit so that after your sugar goes low, and with the hormone release, your sugars go way up again, which causes your pancreas to release more insulin and then it goes way down.

Now you are in to this sinusoidal wave of blood sugar, which causes insulin resistance. Your body can't stand that for very long so you are constantly putting out cortisone.

Insulin Resistance

We hear a lot about insulin resistance, but stop and think a little bit, do you think our cells only become resistant to insulin? The more hormones your cells are exposed to, the more resistant they will become to almost any hormone. Certain cells more than others though, so there is a discrepancy. The problem with hormone resistance is that there is a dichotomy of resistance--all the cells don't become resistant at the same time.

And different hormones affect different cells, and the rate of hormone is different among different cells and this causes lots of problems with the feedback mechanisms. We know that one of the major areas of the body that becomes resistant to many feedback loops is the hypothalamus.

Hypothalamic resistance to feedback signals plays a very important role in aging and insulin resistance because the hypothalamus has receptors for insulin too. I mentioned that insulin stimulates sympathetic nervous system; it does so through the hypothalamus, which is the center of it all.




 

Popularity:   message viewed 1743 times
URL:   http://www.curezone.org/blogs/fm.asp?i=982757

<< Return to the standard message view

Page generated on: 11/25/2024 12:29:30 PM in Dallas, Texas
www.curezone.org