Ambient Electromagnetic Radiation
Oh make me write bad checks, and tie me up...this is too scientific for words...and.... yet, there is a seed~ what if: one could put Magnetite in the red stuff Hindus rub on the 3rd eye and it soaked through the skin and then one took melatonin and howled at the moon on the 3rd Thursday of the 3rd month of the lunar centrifugal nonsense yada- then you are a socerer...huh?
Date: 9/7/2005 8:14:29 PM ( 19 y ) ... viewed 1389 times Effects of Ambient Electromagnetic Radiation
Given that the production of melatonin is, amongst other things, controlled by the intensity and nature of ambient electromagnetic fields (EMFs) of geo-magnetic strength, then the intensity and orientation of the EM fields a neonate is exposed to perinatally could obviously alter the level of pineal melatonin in that neonate and, hence, influence its later development.
We know the exposure of neonatal animals to light significantly changes later melatonin secretion patterns, and we know that similar effects occur in human newborns (Fielke et al, 1994; Pelisek et al, 1994). We also know that, again, as in animals, EM radiations significantly alter circulation melatonin in humans (Graham et al, 1997; Juutilainen et al, 2000; Reiter, 1995).
There also appears to be a link between the geomagnetic field and developmental factors in humans. For example, the only significant factor that correlates with the development of epilepsy in young adults is the level of geomagnetic activity for two days after birth, and geomagnetic variables have also been considered to be a trigger for birth. There is also a significant correlation between the level of geomagnetism on, and for up to three days before, the birth of male children (Persinger & Hodge, 1999).
Hence an association between the precise time of birth and later general developmental traits might be expected and, in one of the most recent social studies of this general type, Wallace and Fisher (2001) have reported that our preference for day or night activity – i.e. whether we are a “day person” or a “night person” – appears to be determined quite simply by whether we were born during the day or born at night.
The mechanism they suggest for this predisposition is one relating to a setting of our body clock and, if true, the neonatal effects of melatonin and the light-dark sensitivity of the pineal gland discussed above could be important in this respect. Such an effect may also be related to season of birth, something we discuss in more detail below.
So, despite the many potential variables inherent in all these studies, what clearly emerges is the fact that the precise time of exposure to altered levels of melatonin, relative to the time of birth – is probably a critical factor in determining whether or not some change in development or behaviour is observed in adulthood.
In other words, exposure of a neonate to melatonin, or to factors that significantly alter circulating melatonin levels at the time of birth – such as local geomagnetic and other EM fields – can potentially lead to highly significant changes in later development.
Put simply: the place, time, and date of a child’s birth can – at least in part –determine its future development: an observation that would have been assumed by the iatromathematicus.
Magnetite
Despite our increased understanding of the functions and mechanisms of action of the pineal gland in the past few decades, the precise mechanism at a cellular level whereby electromagnetic radiation can produce biological effects was, until recently, unknown. However in the past decade or so, studies of the ferrous mineral known as magnetite, have shown that it can act as a transducer linking ambient electromagnetic activity to cellular function. In addition – in both animals and humans – magnetite has been identified in most tissues examined, including the pineal gland (Lohmann & Johnsen, 2000; Schultheiss-Grassi & Dobson, 1999).
Add This Entry To Your CureZone Favorites! Print this page
Email this page
Alert Webmaster
|