"instead of the contrast compounds being the cause of the effect, maybe its the result of the fluoride being released to be the cause..."
good thinking:) Could be that, could be....
"The thyroidal and extrathyroidal I-concentration and NIS(sodium-iodide symporter) are inhibited by
nitrates ,
nitrites , fluorides, thiocyanate, some glycosides, salt and also, paradoxically, by an excessive quantity of iodine."
http://iodine4health.com/research/venturi_2005_iodine_salivary_glands.doc
"Gastro-salivary clearance and secretions of iodides are an important part of “gastro-intestinal cycle of iodides”, which constitutes about 23 % of iodides pool in the human body, that is important for the overall
Iodide economy [12]. Mammalians, as cows in their abomasum, have an efficient
Iodine recycling system via the oral-salivary and gastro-intestinal tract, which conserves
Iodine and can protect them against low dietary
Iodine [13-16]. The entero-thyroidal circulation of iodides seems mediated principally by salivary and gastric NIS. In the mammals and humans, dietary iodine is, by NIS, rapidly adsorbed as
Iodide (I-) from the small intestine. Several mammalian extrathyroidal non-follicular organs share the same gene expression of NIS and particularly salivary glands, stomach mucosa and lactating mammary gland [11, 17]. Thymus, epidermis, choroid plexus and articular, arterial and skeletal systems [11, 18] have I-concentrating ability too. The fact that 131-radioiodine is also detectable in radioautographies of oral mucosa and epidermal fur of rats after 14 days, strongly suggests formation of unknown structural iodocompounds and iodoproteins in some I-concentrating cells [17,18]. Salivary glands and saliva have highest and rapid I-concentrating capacity in the body, via an efficent NIS. According to Banerjee [19, 20] and De SK [21] the salivary glands and gastric mucosa has high ability to concentrate iodides and to form iodocompounds by peroxidases. The fact that mucous cells of some metastases from salivary glands and gastric cancers show I-concentrating ability might be interesting for a possible radiometabolic therapy [22]. The thyroidal and extrathyroidal I-concentration and NIS are inhibited by
nitrates ,
nitrites , fluorides, thiocyanate, some glycosides, salt and also, paradoxically, by an excessive quantity of iodine. Excess of iodides impairs the
Iodide pump ( and NIS) and the cellular trophism of iodide-concentrating tissues, resulting in functional damage including the well-known Wolff-Chaikoff effect, which occurs in the thyroid even with a dosage just in excess of 2 mg, as well as degenerative and necrotic lesions in the iodide-concentrating tissues (thyroid, salivary gland and gastric mucosa). Inorganic iodine regulates the production of epidermal growth factor (EGF) in isolated thyroid cells, and controls DNA synthesis and cell proliferation [23]; this action might also occur in gastric mucosa and in salivary glands. EGF is a low-molecular-weight polypeptide first purified from the mouse submandibular gland, but since then found in many human tissues including submandibular gland, parotid gland. Salivary EGF plays an important physiological role in the maintenance of oro-esophageal and gastric tissue integrity. The biological effects of salivary EGF, and also esophageal derived EGF, include healing of ulcers, inhibition of gastric acid secretion, stimulation of DNA synthesis as well as mucosal protection from intraluminal injurious factors such as gastric acid, bile acids, pepsin, and trypsin and to physical, chemical and bacterial agents. The multiple functions of saliva relate both to its fluid characteristics and specific components. Banerjee reported iodination “in-vitro” of salivary and gastric proteins by peroxidase enzymes, and reported that salivary gland is one of the richest sources of peroxidases, which are similar to the lactoperoxidases [19, 20]. De SK et al. [21] investigated the role of peroxidase-catalyzed formation of iodotyrosines in submaxillary glands and stomach. Abbey et al. [ 24] reported that women incurred a fourfold-to-fivefold increased risk of a second primary
Breast Cancer subsequent to the first primary salivary gland tumor."